Поиск по каталогу

Библиотека онлайн

W010743 Контрольная работа Операционные системы многопроцессорных компьютеров

950 руб. 400 руб.
В корзину

Содержание

ВВЕДЕНИЕ  3

1. Структура и специфика многопроцессорных систем  4

1.1 Общая структура многопроцессорной системы 5

1.2 Основные компоненты многопроцессорной системы 6

1.3 Спецификация аппаратных средств многопроцессорной системы 7

2. Операционные системы для работы с многопроцессорными системами  9

2.1 Первые операционные системы для работы в многопроцессорной конфигурации  10

2.2 Виды многопроцессорных систем и операционные системы для работа с ними 13

ЗАКЛЮЧЕНИЕ  15

Список литературы  16

Введение


Потребность решения сложных прикладных задач с большим объемом вычислений и принципиальная ограниченность максимального быстродействия "классических" - по схеме фон Неймана - ЭВМ привели к появлению многопроцессорных вычислительных систем (МВС). Использование таких средств вычислительной техники позволяет существенно увеличивать производительность ЭВМ при любом существующем уровне развития компьютерного оборудования. При этом, однако, необходимо "параллельное" обобщение традиционной - последовательной - технологии решения задач на ЭВМ. Так, численные методы в случае многопроцессорных систем  должны проектироваться как системы параллельных и взаимодействующих между собой процессов, допускающих исполнение на независимых процессорах.

Мультипроцессирование приводит к усложнению всех алгоритмов управления ресурсами, следовательно должно создаваться специальное программное обеспечение для решения этих проблем, а следовательно операционные системы для работы в многопроцессорной  конфигурации.

1 Структура и специфика многопроцессорных систем

Многопроцессорная архитектура, включает в себя два и более центральных процессоров (ЦП), совместно использующих общую память и периферийные устройства (Рис.1), располагая большими возможностями в увеличении производительности системы, связанными с одновременным исполнением процессов на разных ЦП. Каждый ЦП функционирует независимо от других, но все они работают с одним и тем же ядром операционной системы. Поведение процессов в такой системе ничем не отличается от поведения в однопроцессорной системе - с сохранением семантики обращения к каждой системной функции - но при этом они могут открыто перемещаться с одного процессора на другой. Хотя, это не приводит к снижению затрат процессорного времени, связанного с выполнением процесса. Отдельные многопроцессорные системы называются системами с присоединенными процессорами, поскольку в них периферийные устройства доступны не для всех процессоров.

Параллельная работа нескольких процессоров в режиме ядра по выполнению различных процессов создает ряд проблем, связанных с сохранением целостности данных и решаемых благодаря использованию соответствующих механизмов защиты.


 

Рис 1. Многопроцессорная конфигурация


1.1 Общая структура многопроцессорной системы

При построении многопроцессорной архитектуры может использоваться одна из нескольких концептуальных моделей соединения вычислительных элементов.

На рис.2 показана общая структура МП-системы: связанная архитектура с общей памятью с распределенной обработкой данных и прерываний ввода-вывода. Она полностью симметрична; т. е. все процессоры функционально идентичны и имеют одинаковый статус, и каждый процессор может обмениваться с каждым другим процессором. Симметричность имеет два важных аспекта: симметричность памяти и ввода-вывода.

Память симметрична, если все процессоры совместно используют общее пространство памяти и имеют в этом пространстве доступ с одними и теми же адресами. Симметричность памяти предполагает, что все процессоры могут исполнять единственную копию ОС.

Требование симметричности ввода-вывода выполняется, если все процессоры имеют возможность доступа к одним и тем же подсистемам ввода-вывода, причем любой процессор может получить прерывание от любого источника.


 

Рис.2 Архитектура многопроцессорной системы.


1.2 Основные компоненты многопроцессорной системы

Системные процессоры. В целях обеспечения совместимости с существующими программными средствами, спецификация основывается на процессорах семейства Intel 486 или Pentium. Хотя все процессоры в МП-системе функционально идентичны, спецификация выделяет два их типа: загрузочный процессор(BSP) и прикладные процессоры(AP). Какой процессор играет роль загрузочного, определяется аппаратными средствами или совместно аппаратурой и BIOS. Это сделано для удобства и имеет значение только во время инициализации и выключения. BSP-процессор отвечает за инициализацию системы и за загрузку ОС. AP-процессор активизируется после загрузки ОС.

Контроллеры APIC. Данные контроллеры обладают распределенной архитектурой, в которой функции управления прерываниями распределены между двумя функциональными блоками: локальным и ввода-вывода. Эти блоки обмениваются информацией через шину, называемую шиной коммуникаций контроллера прерываний. Блоки APIC совместно отвечают за доставку прерывания от источника прерываний до получателей по всей МП-системе.

Системная память. В системах, совместимых с МП-спецификацией, используется архитектура памяти стандарта AT: вся память используется как системная за исключением адресов, зарезервированных под устройства ввода-вывода и BIOS.

МП-системы нуждаются в высокой пропускной способности по сравнению с однопроцессорными. Требования возрастают пропорционально числу процессоров на шине памяти.

Шина расширения ввода-вывода. Спецификация обеспечивает построение МП-систем на основе платформ PC/AT, отвечающих промышленным стандартам. В проектах могут быть использованы стандартные шины ISA, EISA, MCA, VL и PCI. BIOS выполняет функции слоя, изолирующего особенности аппаратных средств от ОС и программных приложений. В многопроцессорных системах BIOS выполняет следующие функции: проверяет системные компоненты; строит таблицы конфигурации, используемые ОС; инициализирует процессор и всю остальную систему; дополнительно: передает информацию о конфигурации в ОС, которая идентифицирует все процессоры и другие компоненты МП-систем; переводит все процессоры и другие компоненты многопроцессорной системы в заданное состояние. Одна из главных целей этой спецификации состоит в том, чтобы обеспечить возможность построения микроядерных ОС для многопроцессорных систем.

Не забудьте оформить заявку на наиболее популярные виды работ: